Cocos2d-x移植自Objective C的Cocos2d,其内存管理其实也来自于OC。因而对于写过OC程序的朋友来讲,Cocos2d-x的内存管理应该是一目了然的,但对于没接触过OC的C++码农来说,或许直接看Cocos2d-x源代码才是最直接快捷的方式。
Node类
我们首先来看Node类的代码,Node是Cocos2d-x中极重要的基类,许多常用的Scene、Layer、MenuItem等都继承自Node。
Node的创建是通过以下的接口,该函数返回一个Node的静态对象指针:
/**
* Allocates and initializes a node.
* @return A initialized node which is marked as “autorelease”.
*/
/**
* 分配空间并初始化Node
* 返回一个被初始化过且是autorelease的Node对象
*/
static Node * create();
下面让我们来看这个函数的实现。该函数采用二段式创建的方式——首先用new operator在heap中开辟空间并进行简单的初始化,假如new返回一个合法地址(Cocos2d-x没有采用C++的异常处理机制),则接着init函数用于实际初始化Node的成员。只有在这二者都成功后,才把创建的指针设为autorelease(关于autorelease后面会继续解释)并返回。
Node * Node::create()
{
Node * ret = new Node();
if (ret && ret->init())
{
ret->autorelease();
}
else
{
CC_SAFE_DELETE(ret);
}
return ret;
}
对于创建失败的情况,Cocos2d-x使用了下面的宏保证该指针被delete且被设为nullptr:
#define CC_SAFE_DELETE(p)
do { delete (p); (p) = nullptr; } while(0)
这个二段式的create函数在cocos2d-x中非常常用,因而cocos2d-x用了以下一个叫CREATE_FUNC来表示这个函数以便给继承Node的子类使用:
/**
* define a create function for a specific type, such as Layer
* @param \__TYPE__ class type to add create(), such as Layer
*/
#define CREATE_FUNC(__TYPE__) \
static __TYPE__* create() \
{ \
__TYPE__ *pRet = new __TYPE__(); \
if (pRet && pRet->init()) \
{ \
pRet->autorelease(); \
return pRet; \
} \
else \
{ \
delete pRet; \
pRet = NULL; \
return NULL; \
} \
}
这样,继承Node的子类(例如ExampleLayer)只需要在类声明(class declaration)中加入CREATE_FUNC(类名)(例如CREATE_FUNC(ExampleLayer)),再override下init函数即可。
Ref类
在Cocos2d-x中,Node类的父类是Ref类,之前我们所看到的autorelease方法实际上就来自于这个父类。
下面我们先来看Ref类的声明,这里为了突出重点,我们忽略script binding的情况:
class CC_DLL Ref
{
public:
/**
* Retains the ownership.
*
* This increases the Ref’s reference count.
*
* @see release, autorelease
* @js NA
*/
/**
* 拿到所有权
* 这会增加引用计数
*/
void retain();
/**
* Releases the ownership immediately.
*
* This decrements the Ref’s reference count.
*
* If the reference count reaches 0 after the descrement, this Ref is
* destructed.
*
* @see retain, autorelease
* @js NA
*/
/**
* 立即释放所有权
* 这会减少引用计数
* 如果更新后的引用计数为0,该Ref对象会被销毁
*/
void release();
/**
* Releases the ownership sometime soon automatically.
*
* This descrements the Ref’s reference count at the end of current
* autorelease pool block.
*
* If the reference count reaches 0 after the descrement, this Ref is
* destructed.
*
* @returns The Ref itself.
*
* @see AutoreleasePool, retain, release
* @js NA
* @lua NA
*/
/**
* 自动释放所有权
* 这会减少引用计数
*
* This descrements the Ref’s reference count at the end of current
* autorelease pool block.
* 如果更新后的引用计数为0,该Ref对象会被销毁
* If the reference count reaches 0 after the descrement, this Ref is
* destructed.
*/
Ref* autorelease();
/**
* Returns the Ref’s current reference count.
*
* @returns The Ref’s reference count.
* @js NA
*/
/**
* 返回该Ref对象的引用计数
*/
unsigned int getReferenceCount() const;
protected:
/**
* Constructor
*
* The Ref’s reference count is 1 after construction.
* @js NA
*/
/**
* 构造函数
* 初始引用计数为1
*/
Ref();
public:
/**
* @js NA
* @lua NA
*/
virtual ~Ref();
protected:
/**
* 采用引用计数(reference counting)
* _referenceCount就是计数值
*/
// count of references
unsigned int _referenceCount;
friend class AutoreleasePool;
// Memory leak diagnostic data (only included when CC_USE_MEM_LEAK_DETECTION is defined and its value isn’t zero)
// 以下函数用于开启内存泄露检测时打印出泄露信息
#if CC_USE_MEM_LEAK_DETECTION
public:
static void printLeaks();
#endif
};
从上面的代码,我们可以初步了解到:Ref采用引用计数(reference counting)的方法来管理某个指针所指向的某个对象,初始创建时计数是1,当计数变为0时该对象被析构;retain方法会增加计数并拿到所有权,而与之对应的,release方法会减少计数;autorelease是把所有权交给友类(friend class)AutoreleasePool,让它来决定何时减少计数,这个类我们后面会继续谈到。
下面我们来看Ref类的实现(definition):
#if CC_USE_MEM_LEAK_DETECTION
static void trackRef(Ref* ref);
static void untrackRef(Ref* ref);
#endif
// 在初始化列表中将计数设为1
Ref::Ref()
: _referenceCount(1) // when the Ref is created, the reference count of it is 1
{
// 假如开启内存泄露检测,则追踪该对象指针,将该对象指针放入一个列表(list)中
// 后面的代码我们很快就会看到这个list
#if CC_USE_MEM_LEAK_DETECTION
trackRef(this);
#endif
}
Ref::~Ref()
{
// 假如开启内存泄露检测且引用计数非0,则在追踪列表中找到该对象指针并删除
#if CC_USE_MEM_LEAK_DETECTION
if (_referenceCount != 0)
untrackRef(this);
#endif
}
// retain只是单纯将计数递增
void Ref::retain()
{
// CCASSERT是cocos2d-x对C++的assert所封装的宏
CCASSERT(_referenceCount > 0, “reference count should greater than 0″);
++_referenceCount;
}
void Ref::release()
{
// 首先计数递减
CCASSERT(_referenceCount > 0, “reference count should greater than 0″);
–_referenceCount;
// 计数为0,应当析构对象
if (_referenceCount == 0)
{
#if defined(COCOS2D_DEBUG) && (COCOS2D_DEBUG > 0)
// 得到一个PoolManager单例的对象
// PoolManager类后面会解释
auto poolManager = PoolManager::getInstance();
// 后面会详细解释这段代码
if (!poolManager->getCurrentPool()->isClearing() && poolManager->isObjectInPools(this))
{
// 以下的注释很重要,很快会解释到
// Trigger an assert if the reference count is 0 but the Ref is still in autorelease pool.
// This happens when ‘autorelease/release’ were not used in pairs with ‘new/retain’.
//
// Wrong usage (1):
//
// auto obj = Node::create(); // Ref = 1, but it’s an autorelease Ref which means it was in the autorelease pool.
// obj->autorelease(); // Wrong: If you wish to invoke autorelease several times, you should retain `obj` first.
//
// Wrong usage (2):
//
// auto obj = Node::create();
// obj->release(); // Wrong: obj is an autorelease Ref, it will be released when clearing current pool.
//
// Correct usage (1):
//
// auto obj = Node::create();
// |- new Node(); // `new` is the pair of the `autorelease` of next line
// |- autorelease(); // The pair of `new Node`.
//
// obj->retain();
// obj->autorelease(); // This `autorelease` is the pair of `retain` of previous line.
//
// Correct usage (2):
//
// auto obj = Node::create();
// obj->retain();
// obj->release(); // This `release` is the pair of `retain` of previous line.
CCASSERT(false, “The reference shouldn’t be 0 because it is still in autorelease pool.”);
}
#endif
// 假如开启内存泄露检测,则在追踪列表中找到该对象指针并删除
#if CC_USE_MEM_LEAK_DETECTION
untrackRef(this);
#endif
// 调用析构函数并释放空间
delete this;
}
}
// 把该对象指针交给友类AutoreleasePool(具体来说,是PoolManager单例对象所得到的当前的AutoreleasePool)来管理
Ref* Ref::autorelease()
{
PoolManager::getInstance()->getCurrentPool()->addObject(this);
return this;
}
unsigned int Ref::getReferenceCount() const
{
return _referenceCount;
}
#if CC_USE_MEM_LEAK_DETECTION
// 这里便是存放所追踪的对象指针的列表
static std::list __refAllocationList;
void Ref::printLeaks()
{
// Dump Ref object memory leaks
if (__refAllocationList.empty())
{
log(“[memory] All Ref objects successfully cleaned up (no leaks detected).\n”);
}
else
{
log(“[memory] WARNING: %d Ref objects still active in memory.\n”, (int)__refAllocationList.size());
// C++的range-for语法
// 打印出每个泄露内存的对象指针的类型和引用计数
for (const auto& ref : __refAllocationList)
{
CC_ASSERT(ref);
const char* type = typeid(*ref).name();
log(“[memory] LEAK: Ref object ‘%s’ still active with reference count %d.\n”, (type ? type : “”), ref->getReferenceCount());
}
}
}
// 将对象指针放入列表中
static void trackRef(Ref* ref)
{
CCASSERT(ref, “Invalid parameter, ref should not be null!”);
// Create memory allocation record.
__refAllocationList.push_back(ref);
}
// 在列表中找到该对象指针并删除
static void untrackRef(Ref* ref)
{
auto iter = std::find(__refAllocationList.begin(), __refAllocationList.end(), ref);
if (iter == __refAllocationList.end())
{
log(“[memory] CORRUPTION: Attempting to free (%s) with invalid ref tracking record.\n”, typeid(*ref).name());
return;
}
__refAllocationList.erase(iter);
}
#endif // #if CC_USE_MEM_LEAK_DETECTION
这段源代码对使用者最重要的在于release函数中的注释:
当Ref的计数变为0时,它一定不能在AutoreleasePool中。
Ref的计数为0且同时在AutoreleasePool中的错误是由new/retain和autorelease/release没有对应引起的(有木有想起C++中new和delete没对应所引起的内存泄露?)
autorelease缺乏对应的retain。 例如:
auto obj = Node::create(); // 注意create函数会调用autorelease方法,因此obj已经没有该指针的所有权了
obj->autorelease(); // obj没有所有权,因此无法再把所有权转交给AutoreleasePool,若要调用autorelease方法需要先调用retain拿到所有权
release缺乏对应的retain。例如:
auto obj = Node::create(); // 注意create函数会调用autorelease方法,因此obj已经没有该指针的所有权了
obj->release(); // obj没有所有权,因此无法再控制计数(所有权在AutoreleasePool),若要调用release方法需要先调用retain拿到所有权
正确的用法是在create后调用autorelease或release方法前先用retain拿到所有权: 例如:
// 前面我们分析过create函数,它会先用new operator得到对象,再调用autorelease方法
// 这里new和autorelease对应
auto obj = Node::create();
|- new Node();
|- autorelease();
// 这里retain和autorelease对应,autorelease一个已经被autorelease过的对象(例如通过create函数构造的对象)必须先retain
obj->retain();
obj->autorelease();
又如:
auto obj = Node::create();
// 这里retain和release对应,release一个已经被autorelease过的对象(例如通过create函数构造的对象)必须先retain
obj->retain();
obj->release();
AutoreleasePool类
现在我们来看Ref类的友类AutoreleasePool。 首先来看类声明:
class CC_DLL AutoreleasePool
{
public:
/**
* @warn Don’t create an auto release pool in heap, create it in stack.
* @js NA
* @lua NA
*/
/**
* 警告:不要在heap上构造AutoreleasePool对象,要在stack上构造
*/
AutoreleasePool();
/**
* Create an autorelease pool with specific name. This name is useful for debugging.
*/
AutoreleasePool(const std::string &name);
/**
* @js NA
* @lua NA
*/
~AutoreleasePool();
/**
* Add a given object to this pool.
*
* The same object may be added several times to the same pool; When the
* pool is destructed, the object’s Ref::release() method will be called
* for each time it was added.
*
* @param object The object to add to the pool.
* @js NA
* @lua NA
*/
/**
* 把指定的对象指针放到AutoreleasePool对象中
* 注意:
* 同一对象的指针可能会被多次加入到同一AutoreleasePool对象中;
* 当该AutoreleasePool对象被析构时,该对象指针被加入多少次,就得调用多少次该对象的release()函数
* 这是因为AutoreleasePool用vector而非set来存放所管理的对象指针,因此不会去重
*/
void addObject(Ref *object);
/**
* Clear the autorelease pool.
*
* Ref::release() will be called for each time the managed object is
* added to the pool.
* @js NA
* @lua NA
*/
/**
* 清空AutoreleasePool
* 每个被管理的对象指针被加入多少次,就会调用多少次release()函数
*/
void clear();
#if defined(COCOS2D_DEBUG) && (COCOS2D_DEBUG > 0)
/**
* Whether the pool is doing `clear` operation.
*/
bool isClearing() const { return _isClearing; };
#endif
/**
* Checks whether the pool contains the specified object.
*/
/**
* 检查AutoreleasePool对象是否管理某个对象指针
*/
bool contains(Ref* object) const;
/**
* Dump the objects that are put into autorelease pool. It is used for debugging.
*
* The result will look like:
* Object pointer address object id reference count
*
*/
void dump();
private:
/**
* The underlying array of object managed by the pool.
*
* Although Array retains the object once when an object is added, proper
* Ref::release() is called outside the array to make sure that the pool
* does not affect the managed object’s reference count. So an object can
* be destructed properly by calling Ref::release() even if the object
* is in the pool.
*/
/**
* AutoreleasePool对象将它所管理的对象指针放到下面的vector中
* 尽管每次有对象指针加到该vector中时,该vector实际上retain拿到了所有权,
* 但是Ref::release()会被调用来保证AutoreleasePool不会改变它所管理的对象指针
* 的引用计数。
* 所以,当某个对象指针被放到AutoreleasePool类中管理时,仍然可以通过调用
* Ref::release()函数来析构它
*/
std::vector _managedObjectArray;
std::string _name;
#if defined(COCOS2D_DEBUG) && (COCOS2D_DEBUG > 0)
/**
* The flag for checking whether the pool is doing `clear` operation.
*/
bool _isClearing;
#endif
};
从类声明中能解读出的最重要的信息是AutoreleasePool类用STL vector来存放它所管理的Ref所指向的对象。要搞清楚原理还需要继续看它的实现:
AutoreleasePool::AutoreleasePool(): _name(“”)
#if defined(COCOS2D_DEBUG) && (COCOS2D_DEBUG > 0)
, _isClearing(false)
#endif
{
_managedObjectArray.reserve(150);
// 每个新创建的AutoreleasePool对象都交由PoolManager单例对象统一管理
PoolManager::getInstance()->push(this);
}
AutoreleasePool::AutoreleasePool(const std::string &name)
: _name(name)
#if defined(COCOS2D_DEBUG) && (COCOS2D_DEBUG > 0)
, _isClearing(false)
#endif
{
_managedObjectArray.reserve(150);
// 每个新创建的AutoreleasePool对象都交由PoolManager单例对象统一管理
PoolManager::getInstance()->push(this);
}
AutoreleasePool::~AutoreleasePool()
{
CCLOGINFO(“deallocing AutoreleasePool: %p”, this);
// 清空该AutoreleasePool
clear();
// 要析构的AutoreleasePool对象不再由PoolManager管理
PoolManager::getInstance()->pop();
}
// 只是单纯调用vector::push_back加入所管理的对象
void AutoreleasePool::addObject(Ref* object)
{
_managedObjectArray.push_back(object);
}
// clear函数就是AutoreleasePool调用release来管理对象的引用计数的地方
void AutoreleasePool::clear()
{
#if defined(COCOS2D_DEBUG) && (COCOS2D_DEBUG > 0)
_isClearing = true;
#endif
// 调用每个在AutoreleasePool的对象指针的release方法
for (const auto &obj : _managedObjectArray)
{
obj->release();
}
// 清空存放管理对象的vector
_managedObjectArray.clear();
#if defined(COCOS2D_DEBUG) && (COCOS2D_DEBUG > 0)
_isClearing = false;
#endif
}
// 线性搜索所管理的对象指针的vector,查看所指定的Ref指针是否存在
bool AutoreleasePool::contains(Ref* object) const
{
for (const auto& obj : _managedObjectArray)
{
if (obj == object)
return true;
}
return false;
}
void AutoreleasePool::dump()
{
CCLOG(“autorelease pool: %s, number of managed object %d\n”, _name.c_str(), static_cast(_managedObjectArray.size()));
CCLOG(“%20s%20s%20s”, “Object pointer”, “Object id”, “reference count”);
for (const auto &obj : _managedObjectArray)
{
CC_UNUSED_PARAM(obj);
CCLOG(“%20p%20u\n”, obj, obj->getReferenceCount());
}
}
PoolManager类
下面我们来看PoolManager类,在Cocos2d-x中,这个类是典型的单例(singleton)工厂类——及有且只有一个PoolManager对象,该PoolManger有一个存放AutoreleasePool对象指针的stack,该stack是由STL::vector实现的。需要注意的是,Cocos2d-x的单例类都不是线程安全的,跟内存管理紧密相关的PoolManager类也不例外,因此在多线程中使用Cocos2d-x的接口需要特别注意内存管理的问题。
我们先来看类声明:
class CC_DLL PoolManager
{
public:
/**
* @js NA
* @lua NA
*/
CC_DEPRECATED_ATTRIBUTE static PoolManager* sharedPoolManager() { return getInstance(); }
static PoolManager* getInstance();
/**
* @js NA
* @lua NA
*/
CC_DEPRECATED_ATTRIBUTE static void purgePoolManager() { destroyInstance(); }
static void destroyInstance();
/**
* Get current auto release pool, there is at least one auto release pool that created by engine.
* You can create your own auto release pool at demand, which will be put into auto releae pool stack.
*/
AutoreleasePool *getCurrentPool() const;
bool isObjectInPools(Ref* obj) const;
/**
* @js NA
* @lua NA
*/
friend class AutoreleasePool;
private:
// singleton类把构造函数和析构函数设为private,避免被调用
PoolManager();
~PoolManager();
void push(AutoreleasePool *pool);
void pop();
static PoolManager* s_singleInstance;
// 同样用vector来存放所管理AutoreleasePool对象指针的列表
std::vector _releasePoolStack;
};
再来看类实现:
PoolManager* PoolManager::s_singleInstance = nullptr;
PoolManager* PoolManager::getInstance()
{
if (s_singleInstance == nullptr)
{
s_singleInstance = new PoolManager();
// Add the first auto release pool
new AutoreleasePool(“cocos2d autorelease pool”);
}
return s_singleInstance;
}
void PoolManager::destroyInstance()
{
delete s_singleInstance;
s_singleInstance = nullptr;
}
PoolManager::PoolManager()
{
_releasePoolStack.reserve(10);
}
PoolManager::~PoolManager()
{
CCLOGINFO(“deallocing PoolManager: %p”, this);
// 逐个析构所管理的AutoreleasePool对象
while (!_releasePoolStack.empty())
{
AutoreleasePool* pool = _releasePoolStack.back();
delete pool;
}
}
// 加入AutoreleasePool对象指针时用的是stl::vector的push_back函数,
// 于是调用back函数就可以得到最新被加入的AutoreleasePool对象指针
AutoreleasePool* PoolManager::getCurrentPool() const
{
return _releasePoolStack.back();
}
// 线性搜索每个被管理的AutoreleasePool,
// 每个AutoreleasePool对象再用contains函数线性搜索一遍
bool PoolManager::isObjectInPools(Ref* obj) const
{
for (const auto& pool : _releasePoolStack)
{
if (pool->contains(obj))
return true;
}
return false;
}
void PoolManager::push(AutoreleasePool *pool)
{
_releasePoolStack.push_back(pool);
}
void PoolManager::pop()
{
CC_ASSERT(!_releasePoolStack.empty());
_releasePoolStack.pop_back();
}
最后的疑问
想必各位用惯了C++的看官在看完了以上的代码之后,最有疑问的还是神秘的Ref::autorelease函数。我们从AutoreleasePool的源代码看到,事实上被autorelease的对象最后还是通过release函数来减少其引用计数的,只不过release函数不是由使用者来调用,而是AutoreleasePool来调用,调用的地方在AutoreleasePool::clear()函数。那么AutoreleasePool如何个「auto」自动管理内存法儿?AutoreleasePool::clear()会在哪个地方被调用?
谜底隐藏在cocos/base/CCDirector.cpp中:
void DisplayLinkDirector::mainLoop()
{
if (_purgeDirectorInNextLoop)
{
_purgeDirectorInNextLoop = false;
purgeDirector();
}
else if (! _invalid)
{
drawScene();
// release the objects
PoolManager::getInstance()->getCurrentPool()->clear();
}
}
这里就不纠缠Director类的实现细节了,上面的代码揭示的事实是:在图像渲染的主循环中,如果当前的图形对象是在当前帧,则调用显示函数,并调用AutoreleasePool::clear()减少这些对象的引用计数。mainLoop是每一帧都会自动调用的,所以下一帧时这些对象都被当前的AutoreleasePool对象release了一次。这也是AutoreleasePool「自动」的来由。